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Derivation of amplitude equations by the renormalization group method
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A proper formulation in the perturbative renormalization group method is presented to deduce amplitude
equations. The formulation makes it possible not only to avoid a serious difficulty in the previous reduction to
amplitude equations by eliminating all of the secular terms but also to derive consistently higher-order correc-
tion to amplitude equation$S1063-651X97)50910-X]

PACS numbegps): 47.20.Ky

Recently a novel method based on the perturbative renowhereLE&f— 2iwd; and 6=kx— wt. In this formulation,t
malization group(RG) theory has been developed as anis chosen as a parameter of RG. Substituting an expansion
asymptotic singular perturbation technique by Chen, Golden-
feld, and Oono[1]. Their renormalization group method A=Ag(&)+ €A+ A+ Agt - - -, (4)
(RGM) removes secular or divergent terms from a perturba- o o
tion series by renormalizing integral constants of lower-ordefnt0 Ed.(3) agd retaining only secular contribution, we have,
solutions. Although they have impressively succeeded in agdP to ordere®,
plication to ordinary differential equatiorf2], a consistent
formulation of the RG method has not been established for
application to partial differential equations. In fact, we have
recently pointed ouf7] that all of the secular solutions of a
perturbation series have not been eliminated yet in the pre- , 5 ) —
vious derivation of amplitude equations from partial differ- LASZZ'k‘9§A2+a§A1_6|AO| A1~ 3A0A,
ential equation$2,3] . — ] ]

In this paper, we present a suitable formulation of a perWhere A is complex conjugate of. Noting that secular
turbation problem in RGM in order to avoid such a difficulty (Polynomia) solutions ofLP;=t' are given by
and deduce some amplitude equations and their higher-order _ - 3 5 )
correction consistently in the framework of RGM. A crucial _ It P It t It t It
part of our formulation is to scale all variables except one % 2’ !
independent variable so that the nonscaled variable is taken
as a parameter of RG. Therefore, the renormalization grougve obtain the following secular solution up to order
equation(RGE) or an amplitude equation obtained by trun-

LA1: 2|k(9§A0,

LA,=2ikd A+ 92A0— 3| Ag|2Ay,

REA L Ta o

cation of a perturbation series depends on the choice of scale; : N 3 )
that is, the initial setting of a perturbation problem, of which A=Ao+t| —€wdsAot €75 wdAo— Ao “Ao
significance is pointed out by S. Sd&.
3 @ - 2n 3A2A +t2 2 o
. DERIVATION FROM A WEAKLY NONLINEAR WAVE € 50 %8| @TERoT | Ao Po| |5 (€Fw) @I
EQUATION 3
H a2 3 2 3t " 3,3
. . ) ) _|€(9§ wéng—— AO AO —€ STWw (9§A0, (5)
As the first example, we derive an amplitude equation ® 6

from the following weakly nonlinear wave equation: . . _
wherew=dw/dk andw=dw/dk. All of secular terms in Eq.

d2u—d2u+(1+ €2u?)u=0, (1) (5 are removed by renormalizing, and the renormalized
amplitudeA is described by RGE,

wheree is a small parameter. In order to focus our attention

. . ; : i 3
to a slowly varying amplitude, let us introduce a complex HA=— ewd A+ e’ w(géA_ —|Al2A
amplitudeA and a stretched variable 2
u=Aexfdi(kx—wt)]+c.c., é=ex, 2 B ia &)aZA—E Al2A (6)
20 7T o '

wherek is a wave numberp=\1+k? and c.c. denotes
complex conjugate, then E@L) is rewritten as P2A= 2w

N S TR
w

[LA— €(2ikd + €9%) A+ 3€?|A|?Ale '+ 2A%e¥ 4+ c.c.=0, .
€ Al 3 A=~ E03TA, ®
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where Eq.(6) is the nonlinear Schoiinger equation with
correction up to ordee®, while Egs.(7) and(8) are easily
shown to be compatible with E¢6) up to ordere®. Since the
above procedure continues to arbitrary orderejrwe can
derive systematically the nonlinear Sctiilger equation
with correction up to arbitrary order.

Il. DERIVATION FROM THE SWIFT-HOHENBERG
EQUATION

Let us derive slowly varying amplitude equations from

the Swift-Hohenberg equatidd],

[d;+(1+A)°—€?(1—u?)Ju=0, 9

where A= g5+ 4; . Introducing a complex amplituda and
stretched variables and » as

u=Aexpix)+c.c., 7=€M, n=¢€"y,

wherem andn are positive constants, we rewrite £§) as
[MA+2€2(2i 05+ 33) 02A+ €9 A+ €3, A
—e2(1-3|A]?)Ale™ + 2A%e** +c.c=0, (10)

whereM = (92+ 2id,)? andx is a parameter of renormaliza-
tion group. When we sein=2 andn=1/2, we obtain the
secular solution of Eq(10), through the perturbative proce-
dure similar to the example in Sec. I, as

x? € 1 ) .
A:Ao('T, 77)+X€C0(T, 77)+ ?_ZBO—"_Z 5(977 Bo+|((97-
1 x3€
+dh—1+ 6|A0|2)C0+3iA§CO} -% Z[iaf7 Bo

—(9,+ 35— 1+6|Ag|?)Co—3A5C,], (11)
whereC is complex conjugate of and
Bo=—(d,+d5—1+3|Ag|*)Ag—4i5°Cy.

RenormalizingA,— A, By—B, andCy— C so that secular
terms in Eq.(11) are removed, we get the following RGE:
d,A=€C, (12

PA= “os €
Xy 4

+3iA2ﬂ,

S03B+i(0,+3,~1+6|A1%)C

13

DERIVATION OF AMPLITUDE EQUATIONS BY THE . ..

RAPID COMMUNICATIONS

R4927

3
€2 4 2 2~
— S Li2B—(d,+ %~ 1+6|A|C~3AC].

(14)

A=

Eliminating C from Egs.(12) and(13), we have the Newell-
Whitehead-Segel equati§f] with correction up to ordee?,
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¢9>2<A=i6(1— P2 | axd A+ —| 1+i0y—

X (d,+d5—1+3|A)A.

It is easy to see that Eq14) is compatible with Eqs(12)
and (13). If we setm=2 andn=1, the similar procedure
yields another amplitude equation up to oreéy

2

PPA= 6—(1+ia )(3,— 1+ 3|A|?)A+ie2a,02A
X 4 xJ\ 07 X0 i\

Ill. DERIVATION FROM A MODEL EQUATION

As a final example, we derive a slow amplitude equation
from the following model equation:

{a[ 9+ (K24 A)?—€2(1—u?)]— Au+(1+ €2u?)u=0,
(15

The nonlinear wave equatiofl) and the Swift-Hohenberg
equation(9) are combined in the model equati@tb), which
may be one of the simplest equations describing the Hopf
bifurcation in continuous media. Let us chodses a param-
eter of RG and introduce a complex amplitudeand a
stretched variablé in the same way as the first exampsee
Eg. (2)] and = ey, then we can derive the following two-
dimensional complex Ginzburg-Landau equatidj with
correction up to ordee® after following the similar proce-
dure used in the above examples:
: ie? we
((?t‘f' ewﬁg)A— 78— 5(95

k 7

. w
Wi+ —a2—3|A|2)A,
where

A.

L w , .
B= (w—4|k2)(9§+Faf,—l—3(l—|)|A|2

In summary, we present a proper formulation in the per-
turbative renormalization group method and deduce typical
amplitude equations and their higher-order correction consis-
tently. In our formulation, we can avoid the serious difficulty
appearing in the previous derivation of amplitude equations
by changing the initial setting of a perturbation problem.
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