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Derivation of amplitude equations by the renormalization group method
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~Received 21 April 1997!

A proper formulation in the perturbative renormalization group method is presented to deduce amplitude
equations. The formulation makes it possible not only to avoid a serious difficulty in the previous reduction to
amplitude equations by eliminating all of the secular terms but also to derive consistently higher-order correc-
tion to amplitude equations.@S1063-651X~97!50910-X#

PACS number~s!: 47.20.Ky
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Recently a novel method based on the perturbative re
malization group~RG! theory has been developed as
asymptotic singular perturbation technique by Chen, Gold
feld, and Oono@1#. Their renormalization group metho
~RGM! removes secular or divergent terms from a pertur
tion series by renormalizing integral constants of lower-or
solutions. Although they have impressively succeeded in
plication to ordinary differential equations@2#, a consistent
formulation of the RG method has not been established
application to partial differential equations. In fact, we ha
recently pointed out@7# that all of the secular solutions of
perturbation series have not been eliminated yet in the
vious derivation of amplitude equations from partial diffe
ential equations@2,3# .

In this paper, we present a suitable formulation of a p
turbation problem in RGM in order to avoid such a difficul
and deduce some amplitude equations and their higher-o
correction consistently in the framework of RGM. A cruci
part of our formulation is to scale all variables except o
independent variable so that the nonscaled variable is ta
as a parameter of RG. Therefore, the renormalization gr
equation~RGE! or an amplitude equation obtained by tru
cation of a perturbation series depends on the choice of s
that is, the initial setting of a perturbation problem, of whi
significance is pointed out by S. Sasa@8#.

I. DERIVATION FROM A WEAKLY NONLINEAR WAVE
EQUATION

As the first example, we derive an amplitude equat
from the following weakly nonlinear wave equation:

] t
2u2]x

2u1~11e2u2!u50, ~1!

wheree is a small parameter. In order to focus our attent
to a slowly varying amplitude, let us introduce a compl
amplitudeA and a stretched variablej,

u5Aexp@ i ~kx2vt !#1c.c., j5ex, ~2!

where k is a wave number,v5A11k2, and c.c. denotes
complex conjugate, then Eq.~1! is rewritten as

@LA2e~2ik]j1e]j
2!A13e2uAu2A#eiu1e2A3e3iu1c.c.50,

~3!
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whereL[] t
222iv] t andu5kx2vt. In this formulation,t

is chosen as a parameter of RG. Substituting an expans

A5A0~j!1eA11e2A21e3A31•••, ~4!

into Eq.~3! and retaining only secular contribution, we hav
up to ordere3,

LA152ik]jA0 ,

LA252ik]jA11]j
2A023uA0u2A0 ,

LA352ik]jA21]j
2A126uA0u2A123A0

2Ā1 ,

where Ā is complex conjugate ofA. Noting that secular
~polynomial! solutions ofLPj5t j are given by
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we obtain the following secular solution up to ordere3:

A5A01tF2ev̇]jA01e2
i

2S v̈]j
2A02

3

v UA0U2A0D
2e3

v̇

2v
]jS v̈]j

2A02
3

v UA0U2A0D G1
t2

2
~e2v̇ !F v̇]jA0

2 i e]jS v̈]j
2A02

3

v UA0U2A0D G2e3
t3

6
v̇3]j

3A0 , ~5!

wherev̇5dv/dk andv̈5dv̇/dk. All of secular terms in Eq.
~5! are removed by renormalizingA0 and the renormalized
amplitudeA is described by RGE,

] tA52ev̇]jA1e2
i

2 S v̈]j
2A2

3

v UAU2AD
2 e3

v̇

2v
]jS v̈]j

2A2
3

v UAU2AD , ~6!

] t
2A5e2v̇F v̇]jA2 i e]jS v̈]j

2A2
3

v UAU2AD , ~7!

] t
3A52e3v̇3]j

3A, ~8!
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where Eq.~6! is the nonlinear Schro¨dinger equation with
correction up to ordere3, while Eqs.~7! and ~8! are easily
shown to be compatible with Eq.~6! up to ordere3. Since the
above procedure continues to arbitrary order ine, we can
derive systematically the nonlinear Schro¨dinger equation
with correction up to arbitrary order.

II. DERIVATION FROM THE SWIFT-HOHENBERG
EQUATION

Let us derive slowly varying amplitude equations fro
the Swift-Hohenberg equation@4#,

@] t1~11n !22e2~12u2!#u50, ~9!

wheren[]x
21]y

2 . Introducing a complex amplitudeA and
stretched variablest andh as

u5Aexp~ ix !1c.c., t5emt, h5eny,

wherem andn are positive constants, we rewrite Eq.~9! as

@MA12e2n~2i ]x1]x
2!]h

2A1e4n]h
4 A1em]tA

2e2~123uAu2!A#eix1e2A3e3ix1c.c.50, ~10!

whereM[(]x
212i ]x)

2 andx is a parameter of renormaliza
tion group. When we setm52 andn51/2, we obtain the
secular solution of Eq.~10!, through the perturbative proce
dure similar to the example in Sec. I, as

A5A0~t,h!1xeC0~t,h!1
x2

2
2

e2

4
B01

e3

4 F1

2
]h

2 B01 i ~]t

1]h
42116uA0u2!C013iA0

2C̄0G2
x3

6

e3

4
@ i ]h

2 B0

2~]t1]h
42116uA0u2!C023A0

2C̄0#, ~11!

whereC̄ is complex conjugate ofC and

B052~]t1]h
42113uA0u2!A024i ]h

2C0 .

RenormalizingA0→A, B0→B, andC0→C so that secular
terms in Eq.~11! are removed, we get the following RGE:

]xA5eC, ~12!

]x
2A52

e2

4
B1

e3

4 F1

2
]h

2B1 i ~]t1]h
42116uAu2!C

13iA2C̄ G , ~13!
]x
3A52

e3

4
@ i ]h

2B2~]t1]h
42116uAu2!C23A2C̄#.

~14!

EliminatingC from Eqs.~12! and~13!, we have the Newell-
Whitehead-Segel equation@5# with correction up to ordere3,

]x
2A5 i eS 12

e

2
]h

2 D ]x]h
2A1

e2

4 S 11 i ]x2
e

2
]h

2 D
3~]t1]h

42113uAu2!A.

It is easy to see that Eq.~14! is compatible with Eqs.~12!
and ~13!. If we set m52 and n51, the similar procedure
yields another amplitude equation up to ordere3,

]x
2A5

e2

4
~11 i ]x!~]t2113uAu2!A1 i e2]x]h

2A.

III. DERIVATION FROM A MODEL EQUATION

As a final example, we derive a slow amplitude equat
from the following model equation:

$] t@] t1~k21n !22e2~12u2!#2n%u1~11e2u2!u50,
~15!

The nonlinear wave equation~1! and the Swift-Hohenberg
equation~9! are combined in the model equation~15!, which
may be one of the simplest equations describing the H
bifurcation in continuous media. Let us chooset as a param-
eter of RG and introduce a complex amplitudeA and a
stretched variablej in the same way as the first example@see
Eq. ~2!# and h5ey, then we can derive the following two
dimensional complex Ginzburg-Landau equation@6# with
correction up to ordere3 after following the similar proce-
dure used in the above examples:

~] t1ev̇]j!A5
i e2

2
B2

v̇e3

2v
]jS v̈]j

21
v̇

k
]h

223uAu2DA,

where

B5F ~v̈24ik2!]j
21

v̇

k
]h

22 i 23~12 i !uAu2GA.

In summary, we present a proper formulation in the p
turbative renormalization group method and deduce typ
amplitude equations and their higher-order correction con
tently. In our formulation, we can avoid the serious difficul
appearing in the previous derivation of amplitude equatio
by changing the initial setting of a perturbation problem.
@1# L. Y. Chen, N. Goldenfeld, and Y. Oono, Phys. Rev. Lett.73,
1311 ~1994!.

@2# L. Y. Chen, N. Goldenfeld, and Y. Oono, Phys. Rev. E54, 376
~1996!.

@3# R. Graham, Phys. Rev. Lett.76, 2185~1996!.
@4# J. Swift and P. C. Hohenberg, Phys. Rev. A15, 319

~1977!.
@5# A. C. Newell and J. A. Whitehead, J. Fluid Mech.38, 279
~1969!.

@6# K. Matsuba, K. Imai, and K. Nozaki, Physica D107, 69
~1997!.

@7# K. Matsuba and K. Nozaki, J. Phys. Soc. Jpn.~to be pub-
lished!.

@8# S. Sasa~private communication!.


